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A new modal synthesis technique inspired from complex modes is presented in this paper.
The purpose of this method is to "nd an alternative to the weakness of usual modal
techniques in order to improve resolution of "nite-element poroelastic problems. Firstly, the
construction of modes and the synthesis for a general forcing is explained. Secondly, the
approach is applied to a one-dimensional poroelastic problem. Finally, the approach is
numerically tested and its performance is investigated by comparison with solutions
obtained with a direct resolution of the system.
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1. INTRODUCTION

Finite multi-layer poroelastic structures are used to improve noise control in many
engineering "elds such as aeronautics, automobiles, etc. To predict the vibro-acoustic
behavior of such systems, several "nite-element models have been implemented [1}5] that
use �u,U� formulation of Biot's poroelasticity equations [6, 7]. However, it has been shown
that �u,U� formulation requires cumbersome calculations for large "nite-element models.
Mixed formulations (displacement of solid phase, pressure in the pores of #uid phase) have
been introduced [8, 9]. Atalla et al. gave an exact �u, P� formulation (with no new
assumptions beyond those governing Biot's poroelastic equations) for a harmonic motion
thereby reducing the number of variables from 6 to 4. This formulation exhibits some
advantages compared to �u,U�: the sti!ness matrix associated with the solid phase is
frequency independent and it accounts naturally for poroelastic}poroelastic interfaces.
Nevertheless, systems may be still large sized even for simple systems (if a large frequency
band is considered) or for complicated systems (e.g., multilayered). Therefore, there is a need
to "nd numerical techniques in order to improve the solving process. At low frequencies,
modal synthesis [10] is commonly used to solve for the vibration of #uid structure
interaction problems [11}18]. Modal analysis is based on two important properties of
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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natural modes: the orthogonality property and the reduction property. The "rst one allows
one to express an n-d.o.f. system in terms of n time-dependent uncoupled co-ordinates
describing the motion of the system at any time. The reduction property is based on the
physical property that a small number of modes are needed to represent the dynamic
behavior of the system. Unfortunately, classical modal analysis cannot be applied to the
poroelastic problem because of the frequency non-linearity of the associated eigenvalue
problem [5]. Attempts have been made by authors to use modal techniques to solve
poroelastic problems. Bouhioui and Hodgson [19] split the spectrum into frequency bands
over which the eigenvalue problem was supposed to be frequency independent. This
allowed them to construct a modal basis for each frequency band. Sgard and Atalla [20, 21]
used an expansion of the �u, P� variables in terms of the uncoupled undamped modes of
each phase. However, this leads to convergence problem due to the fact that damping
mechanisms associated with the porous material and coupling between both phases were
not accounted for in the modal analysis.
The purpose of this paper is to propose a new modal analysis approach based on an

extension of the complex modes technique to calculate the vibro-acoustic behavior of
a porous material. The originality of this approach is to exhibit coupled modes which take
into account thermal and viscous damping mechanisms present in the poroelastic material.
It will be shown that this technique leads to a reduction of the size of the problem.
Section 2 presents "nite-element equations related to poroelastic problems. Sections 3

and 4 are devoted to the description of the generalized complex modes synthesis. This
technique is applied to the poroelastic problem in section 5. Finally, section 6 presents
numerical results and section 7 gives the conclusion of this work.

2. THE POROELASTIC PROBLEM

The "nite-element discretization of the Biot �u, P�weak integral formulation at pulsation
� is given by Atalla et al. [8] as

[K� ]#(j�)�[M� ] ![C� ]

!��[C� ]� [H� ]!��[Q� ] �
u

P� e���"�
F�

F�� e���, (1)

where u is the displacement nodal vector of the solid phase, P is the interstitial pressure
nodal vector of the #uid phase. F� and F� are, respectively, the forcing applied on the solid
and the #uid phases. [K� ] and [M� ] represent the sti!ness and mass matrices of the solid
phase which are given by

[K� ]"(1#j�
�
)[K

���
] with [K

���
]"��

�

[[L][N�]]�[H][L][N�] d�; (2)

[M� ]"�� [M
���
] with [M

���
]"��

�

[N�]�[N�] d� , (3)

where �
�
is the porous volume, �

�
is the structural damping coe$cient and �� is the e!ective

density of the solid phase. [N�] and [N�] are the elements' shape functions used to
approximate the solid-phase displacement vector and the interstitial pressure respectively.
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[H] is the Hooke's matrix of the solid phase and [L] is de"ned by

[L]"

�
�x

0 0
�
�y

0
�
�z

0
�
�y

0
�
�x

�
�z

0

0 0
�
�z

0
�
�y

�
�x

. (4)

[H� ] and [Q� ] represent the kinetic and compression energy matrices of the #uid phase:

[H� ]"
h�

�J
��

[H
���
] with [H

���
]"��

�

	 [N�]�	 [N�] d�, (5)

[Q� ]"
h�

RI
[Q

���
] with [Q

���
]"��

�

[N�]�[N�] d�. (6)

Here h denotes the porosity. R� may be interpreted as the bulk modulus of the air occupying
a fraction h of a unit volume of aggregate and ��

��
is the modi"ed Biot's density of the #uid

phase. The expressions of �� and ��
��
are given by

�� "��
��

!

�� �
��

��
��

, ��
��

"�
��

#

b�
j�
, (7)

with
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��

"�
��

#

bI
j�
, ��

��
"�

��
!

b�
j�

(8)

and

�
��

"(1!h)�
�
!�

��
, �

��
"h�

�
!�

��
, �

��
"!h�

�
(


�
!1). (9)

�
�
and �

�
are, respectively, the mass density of the solid phase and of the #uid in the pores

and 

�
is the tortuosity [22]. ��

��
is the modi"ed Biot's density of the solid phase accounting

for viscous dissipation and ��
��
accounts for the interaction between the inertia forces of the

solid and #uid phases together with viscous dissipation. b� is a frequency-dependent viscous
coe$cient de"ned by

b� "h��GI , GI "�1#j�/H , H"����h�/4
�
�

��
�
,

where � is the #ow resistivity,H is the viscous characteristic frequency [5], � is the viscous
characteristic length introduced by Johnson [23] and � is the kinematic #uid viscosity. Note
that G� accounts for viscous e!ects.
Finally, [C� ] is a volume coupling matrix between the solid-phase displacement and the
#uid-phase pressure:

[C� ]"�� [C
���
] with [C

���
]"��

�

[N�]�	 [N�] d�. (10)
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�� is a coupling parameter:

�� "h�
�J
��

�J
��

!

QI
R� � . (11)

Note that for most of the porous materials, one has [8]

QI "(1!h)KI
�
, RI "hKI

�
. (12)

KI
�
is the e!ective bulk modulus of the air in the pores [7] which accounts for thermal

e!ects:

KI
�
"

�P
�

�!((�!1)/[1#(H/2j�)GI ])
, GI "�1#

j�
H
, H"

16�
Pr ���

�

. (13)

H is the thermal characteristic frequency given by Panneton [5], � is the thermal
characteristic length [24] and Pr is the Prandtl number. (A list of notations is given in
Appendix A).
The matrix in the left-hand side of equation (1) is not symmetric. Nevertheless, one can

give it a symmetric form by multiplying the set of equations related to the skeleton by ( j�)�
and the set of equation related to the #uid phase by !1. Hence,

( j�)�[K� ]#( j�)�[M� ] !( j�)�[C� ]

!( j�)�[C� ]� ![H� ]!( j�)�[Q� ] �
u

P� e���"�
( j�)�F�

!F� � e���. (14)

Each matrix (except [K� ]) represented with the symbol � is equal to the product of
a complex function of the real parameter � by a real symmetric matrix. The frequency
non-linearity of the associated eigenvalue problem is induced by two e!ects. The "rst one is
due to the frequency dependence of the coe$cients �� , 1/��

��
, 1/RI and �� . The second one is

induced by the selected �u, P� formulation and the multiplication by powers of ( j�) of these
di!erent coe$cients. Figure 1 presents the variation of � ( j�)��� �, �h�/�J

��
�, � ( j�)�h�/RI � and

�( j�)��� � for the three materials presented in section 5 in the frequency range [1; 1500 Hz].
Furthermore, all these functions have the highlighting property of being regular enough to
be expressed at low frequencies by a Taylor expansion with real coe$cients. Note that
matrix [K� ] contains the hysteretic damping of the solid phase which will be neglected for
the modes calculation. All these considerations will be detailed in section 5.
All the variables �� , h�/�J

��
, h�/RI and �� can be expanded in the following form:

<I "
	
�
���

v
�
( j�)�#O(�	
�). (15)

This induces that each one of the matrices appearing in equations (2), (3), (5), (6), (10) can be
written as

[M� ]"
	
�
���

m
�
( j�)�[M

���
]#O(�	
�), [K� ]"

	
�
���

k
�
( j�)�[K

���
]#O(�	
�), (16a)

[H� ]"
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h
�
( j�)�[H

���
]#O(�	
�), [Q� ]"
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q
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( j�)�[Q
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]#O(�	
�), (16b)
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c
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���
]#O(�	
�), (16c)



Figure 1. Coe$cients versus frequency: (a) ���� ; (b) h�/�J
��
; (c) ��(h�/RI ); (d) ���� ; **�*, material A; *#*,

material B; **£*, material C.
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where m
�
, k

�
, h

�
, q

�
and c

�
are the coe$cients of the Taylor expansions of �� , 1, h�/�J

��
, h�/RI

and �� respectively.
Equation (14) can then be transformed as

	
�
���

[M
�
]( j�)� �

u

P�#[R
	
](�) �

u

P�"�
F
�

F
�
�, (17)

with the following matrices:

[M
�
]"

[0] [0]

[0] !h
�
[H

���
]
, [M

�
]"

[0] [0]

[0] !h
�
[H

���
]
, (18, 19)
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]
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�
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]� !h

�
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]
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]
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]
, (21)
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�
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(i*4), (22)



426 O. DAZEL E¹ A¸.
where d corresponds to the order of Taylor expansion in terms of �. Each [M
�
] is a real

symmetric matrix and [R
	
](�) is a matrix depending on � corresponding to the remainder.

Under this form, equation (17) can be seen as an extension of the complex modes and the
presentation of a new modal technique is the purpose of next section.

3. GENERALIZED COMPLEX MODES

In this section, an extension of the complex modes method [10] is presented. To the
author's knowledge, this technique has never been expounded before. This presentation
is made in a general case and its application to the poroelastic problem is the subject of
section 5.

3.1. DEFINITIONS

Consider the equation

Du"0, (23)

where u3C	(�, ��), d3� and D is a di!erential operator generally non-linear from
F(�, ��) into itself. It is assumed that D can be written in the form

Du"

	
�
���

[M
�
]u	�
#R

	
u, (24)

where [M
�
] is a real symmetric (n, n) matrix, u	�
 is the ith derivative of u and R

	
is an

operator, called remainder at order d, from C	 (�, ��) into F(�, ��). The "rst part of the
right-hand side is said to be the expansion at order d. It is further assumed that det[M

	
]O0.

The idea of the approach is to "nd the modes of the expansion at order d.

3.2. PROBLEM TRANSFORMATION

The following equation is considered:

	
�
���

[M
�
]u	�
"0. (25)

This problem of degree d and dimension n is transformed into a linear problem of dimension
nd. We introduce U3F(�, ��	) assembled according to the model of Duncan's
transformation [25]:

U"�
u		��


�

u	�


u � . (26)

U is called the associated generalized state vector of order (d!1). [A] and [B] are
constructed by block choosing equation (25) for the "rst relation. The choice of the n(d!1)
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other relations is arbitrary. It is straightforward to show that solutions of equation (30) do
not depend on this choice. The general form of the problem is then

[L] [M
�
]

[�] [0]
U"

![M
	
] [0]

[0] [�]
U� , (27)

where U� denotes the "rst derivative of U,

[L]"[[M
	��
] 2 [M

�
]] (28)

and [�] is an (n (d!1), n (d!1)) matrix to be chosen. With

[A]"
[L] [M

�
]

[�] [0]
and [B]"

![M
	
] [0]

[0] [�]
, (29)

equation (27) reads

[B]U� "[A]U. (30)

Note that the solution of equations (27) is equivalent to solving

![M
	
]��[L] ![M

	
]��[M

�
]

[I
� 		��


] [0]
U"U� , (31)

where [I
�		��


] denotes the identity matrix of order n(d!1).
In order to prove the orthogonality properties of modes, it is advantageous to choose [�]

to make [A] and [B] symmetric as

[M
	��
] [M

	��
] 2 [M

�
]

[M
	��
] 2 [M

�
] [0]

� � � �

[M
�
] [0] 2 [0]

U"

![M
	
] [0] 2 [0]

[0] [M
	��
] 2 [M

�
]

� � � �

[0] [M
�
] 2 [0]

U� . (32)

Equation (32) is solved by looking for solutions of the form u(t)"u
�
e�� where u

�
3�� and

s3�. A classical eigenvalue problem is then obtained:

s[B]U
�
"[A]U

�
. (33)

Since [A] and [B] are real

([A]!s[B])U
�
"0 8 ([A]!sN [B])U�

�
"0. (34)

Therefore, if (s,U
�
) is solution of equation (33), the conjugate, (sN , U�

�
) is also a solution of

equation (33).

3.3. EIGENVECTORS' ORTHOGONALITY

Let (s
�
,U

�
) and (s

�
, U

�
) be two solutions of equation (33) so that s

�
Os

�
; then one can write

([A]!s
�
[B])U

�
"0, ([A]!s

�
[B])U

�
"0. (35, 36)
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By projection, one has

U�
�
[A]U

�
!s

�
U�

�
[B]U

�
"0 (37)

and

U�
�
[A]U

�
!s

�
U�

�
[B]U

�
"0. (38)

Due to the symmetry of [A] and [B] subtracting equation (37) from equation (38) yields

(s
�
!s

�
)U�

�
[B]U

�
"0 (39)

and hence,

∀(i, j ), s
�
Os

�
NU�

�
[B]U

�
"0 (40)

and

∀(i, j ), s
�
Os

�
NU�

�
[A]U

�
"0. (41)

In the case where (s, U) and (s, U) are two di!erent solutions of equation (32) the
degenerescence theorem [26] cannot be applied because [B] is not a de"nite-positive matrix
so that no scalar product can be de"ned with respect to [B]. Nevertheless, theoretical
properties of bi-orthogonality between the eigenmodes and its adjoint could be envisaged to
generalize the orthogonality properties [27]. This will not be detailed in this part because in
all the numerical cases multiple eigenvalues will correspond to modes that will be discarded.

4. MODAL SUPERPOSITION

4.1. NOTATIONS

First of all, to improve the readability of the text, all notations and conventions used in
this part are presented. [�] is the diagonal matrix where the ith value corresponds to the ith
eigenvalue of equation (33) and [�] is a matrix where the ith column is the corresponding
eigenvector of equation (33). The following decompositions of [�] are considered:

[�]"�
[�]
[�

�
]�"�

[�
	��
]

[�] � . (42)

Here [�
�
] is the (n, nd) matrix of the ith derivatives of the nd solutions of equation (25). [�]

and [�] and ((d!1)n, nd) matrices. The following relations hold:

∀
�
3[0, d!1], [�

�
�
]"[�

�
][�], (43)

[�]"[�][�]. (44)

The modal decomposition of vector U using the modal basis [�]"[�i] reads

U"

�	
�
���

z
�
�

�
"[�]z, (45)
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where vector z corresponds to the modal coe$cients. Hence,

U"�
[�]
[�

�
]�z, U� "�

[�
	��
]

[�] �z� (46, 47)

and by identi"cation

[�]z"[�]z� , (48)

which follows from the redundancy of the Generalized State Vector.

4.2. FORCED DIFFERENTIAL PROBLEM

To present the forced di!erential problem, consider the equation

Du"f, (49)

whereD is de"ned by equation (24); f is the forcing and pertains toF(�, ��). This equation
is rewritten in the Generalized State Space, with the notations of the former section, as

![B]U� #[A]U#R
�
U"�, (50)

with

�"(f �020)� and R
�
U"(R�

	
u020)�. (51)

Hence by pre-multiplying equation (50) by [�]� one gets

![�]�[B][�]z� #[�]�[A][�]z#[�]�R
�
[�]z"	, (52)

with

	"[�]��. (53)

4.2.1. Case 1: R
�
is negligible

The ith row of equation (52) reads

!zR
�
#s

�
z
�
"�

�
/��

t

[B]��, (54)

with

b
�
"��

t
[B]��. (55)

One then obtains

z
�
(t)"

1

b
�
�

�

�

�
�
(�)e��	���
d�. (56)

Recalling equation (45), one has

u (t)"
�	
�
���

1

b
�

� �
� �

�

�

�
�
(�)e��	���
d�. (57)
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In order to use the reduction property, a sub-family [�
�
] of [�] has to be selected by

keeping m modes in the nd of the modal basis. The selection process will be explained in
section 5.3. Thus

[�
�
]"[�][
], (58)

where [
] is an (nd, m) matrix where the coe$cient of index (i, j ) is equal to 1 if the jth mode
of [�] is selected at the ith place. Let [�

�
] be the selection of m modes among the nd of the

modal basis:

[�
�
]"[�

�
][
]. (59)

Finally, one obtains

�u
�
�(t)"


�
�M ��

1

b
�M

���� �
�

�

�
�N
(�)e��� 	���
d�. (60)

4.2.2. Case 2: R
�
is not negligible

In some cases, particularly for porous materials, the contribution of R
�
may be

su$ciently important and the approximation of the former section cannot be applied. In the
present case, the orthogonality property cannot be used and it is only possible to apply the
reduction property. According to equation (52), a projection with respect to matrix [�] has
to be done. It is shown here that a projection with respect to matrix [�

�
] can be done, which

is better in terms of number of operations. In particular, the projection does not depend on
the order of the expansions.
From equations (27) and (42) one can write

[�]�[A][�]"[[�
	��
]�[�]�] �

[L]

[�]
[M

�
]

[0] � �
[�]
[�

�
]�

"[�
	��
]�[[L][�]#[M

�
][�

�
]]#[�]�[�][�] (61)

and

[�]�[B][�]"[[�
	��
]�[�]�] �

![M
	
]

[0]

[0]

[�]� �
[�

	��
]

[�] �
"![�

	��
]�[M

	
][�

	��
]#[�]�[�][�]. (62)

Upon considering

R
�
U (t)"R

�
[�]z(t)"R

	
�[�

�
]z	�
(t)�, (63)

equation (52) becomes

[�
	��
]�[[M

	
][�

	��
]z� (t)#[�

	��
]�[[L][�]#[M

�
][�

�
]]z(t)

#[�
	��
]�R

	
�[�

�
]z	�
� (t)"	 (t). (64)

With

[�
	
]z"[�

	��
]z� , (65)



MODAL ANALYSIS OF POROELASTIC MATERIALS 431
one gets

[�
	��
]�[[M

	
][�

	
]#[L][�]#[M

�
][�

�
]]z (t)

#[�
	��
]�R

	
�[�

�
]z	�
�(t)"	(t), (66)

which is the projection of the initial problem on the [�
�
] family:

[�]	��[�
�
]�D[�

�
]z(t)"[�]	��[�

�
]�f(t). (67)

An (nd, nd) linear system has to be solved for each t. Let �(t) be the solution. The modal
superposition then gives

u (t)"[�
�
]�(t). (68)

The solution of equation (67) involves solving an order m problem for each t:

[�
�
]	��[�

�
]�D[�

�
]z

�
(t)"[�]	��[�

�
]�f(t). (69)

Let �
�
(t) be the solution. An approximation u

�
of vector u is then given by

u
�
(t)"[�

�
]�

�
(t). (70)

4.3. STABILITY OF THE SOLUTION

The stability of the approximate model (32) is not ensured in a general case and physical
conditions need now to be considered. Unstable modes can appear and a procedure to "lter
them has to be elaborated. Fung et al. [28] inspired by Tam and Auriault [29] proposed, in
the context of a time-domain impedance problem, a method which consists in replacing the
initial unstable problem by an equivalent stable one determined either experimentally or
analytically.
In our case, the stability of the modal solution (57) requires the real part of all the

eigenvalues s
�
to be negative. In the case of natural undamped modes, the nullity of the real

part is proved by the positivity of the mass and sti!ness matrices. Classical complex modes
have been introduced in the scope of structural dynamics of viscously damped discrete
system [30]. The related stability has been studied analytically [31] and is satis"ed due to
physical conditions.
In the case of generalized complex modes (24), results for the sign of the real part of the

eigenvalues cannot be obtained without physical conditions. The authors are not aware of
stability results regarding equation (32). Some indications on the stability of the model can,
however, be given for the problem of interest. Indeed, the application of this technique to
porous materials should not lead to modes with a positive real part by reason of the
dissipative nature of poroelastic media. From a numerical point of view, the numerous
simulations have shown that modes with a positive real part can be found though. The
existence of these modes may be due to numerical errors in the modes' determination.
Nevertheless, they all had a high eigenfrequency so that they were very far from the set of
selected modes for the modal synthesis and then were not selected. The stability of the
model is then ensured.
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4.4. HARMONIC PROBLEMS

The temporal dependency e��� is now assumed for all "elds. This case corresponds to the
poroelastic materials considered in sections 2 and 5.
Equation (49) becomes

DK (�)u; e���"f< e���, (71)

where D) is such that

D) (�)u;"
	
�
���

[M
�
](j�)�u;#R)

	
(�)u( , (72)

where each [M
�
] is a real symmetric (n, n) matrix. det[M

	
]O0 is assumed.

4.4.1. Case 1: R)
�
is negligible

Equation (57) gives
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and equation (60) yields
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4.4.2. Case 2: R
�
is not negligible

The modal superposition is

u; (�)"[�
�
]�) (�) (75)

with �) (�) the solution of
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Hence, the approximate u
�
( of u( is
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with �)
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(�) the solution of
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The following section is devoted to the application of this technique to the physical
problem of poroelastic materials.

5. APPLICATION OF THE GENERALIZED COMPLEX MODES TO THE
POROELASTIC PROBLEM

In order to rewrite the poroelastic problem (14) in form (17), a Taylor expansion of �� , �� ,
1/��

��
and 1/R� has to be written. As was said in the introduction, all these coe$cients have
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the particular property that their dependency is in j� and that the low-frequency Taylor
expansions have real coe$cients. This is very interesting for applying the method of
complex modes described in sections 3 and 4.

5.1. ORDER OF TAYLOR EXPANSIONS

In the theoretical part, a construction at order d was presented. For the problem of
interest (17), an order must be chosen. Beforehand, a few remarks need to be made. First of
all, if one wants to take into account each coe$cient, the order of each variable expansion
must be greater than 0 or equal to 0. This will lead to a polynomial of degree 4 in � with
valuation equal to 1. This valuation is governed by the coe$cient of degree 0 of the
expansion of [H� ] which is equal to 0. In equation (25), this polynomial is equivalent to
a degree 3 polynomial with a valuation equal to 0. This choice is considered. The order of
each variable expansion has now to be speci"ed.
Since [M� ] is multiplied by (j�)�, a zero order Taylor expansion must be performed. [Q� ]

and [C� ] are multiplied by (j�)� and will be expanded at order 2. Finally, for [H� ] an order
4 can be chosen. Formally, it can be shown that

�� "((1!h)�
�
#h�

�
)#O( j�), (79)
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Figure 2 presents the relative di!erences between the value of each parameter and its
Taylor expansion versus frequency for the three materials presented in section 5 in the
frequency range [0; 1500 Hz]. One can observe that all the relative di!erences are lower
than 10�� which shows the validity of this development and the good approximation of the
matrix of operator D in equation (24) by using a development at order 4.

5.2. STUDY OF R
	

Regarding R
	
a few points need to be explained. R

	
is the di!erence between operator

whosemodes are calculated and operatorD of equation (49) on which the forcing is applied.
In the case of poroelastic materials R

	
is made up of three terms as

R
	
"R

���
#R��#R

�
. (83)



Figure 2. Relative di!erence between parameter and their Taylor expansion: (a) material A; (b) material B; (c)
material C; **�*, 10��

�
(�� ); *#*, 10�

�
(1/��

��
); **£*, 10��

(1/R� ); ****, 10���
(�� ).
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R
���
is due to the remainder at order d in the expansion of operator D in equation (24).

This is supposed to decrease with the order of expansions. Nevertheless, numerical results
(detailed in the former section) can let one suppose that its in#uence on the result can be
neglected.
R�� is due to the approximationmade by neglecting the structural damping in the sti!ness

matrix of the solid phase during the research of the modes.
R

�
is due to the way forcing terms are numerically implemented. In the case of porous

materials acoustically or mechanically excited, the forcing is modelled by an imposition of
di!erent degree of freedom (for example, a mechanical excitation consists in imposing the
displacement of the solid face nodes on the interface where the excitation is applied).
Numerically, this imposition can be performed by the following method inspired by
reference [32]. Let [M(�)] be the (n, n) matrix of operator D envisaged in equation (49) and
u� the vector of imposed d.o.f. where the ith coe$cient is equal to 0 if no imposition is made
on the corresponding d.o.f. and equal to the imposed value in the case of a prescribed d.o.f.
The forcing f is applied so that its ith component is equal to 0 if the corresponding d.o.f. is
not imposed. [M(�)] is replaced by [M(�)] constructed by putting a 0 on each row and
column corresponding to an imposed d.o.f. (e.g., d.o.f. i ) except for the coe$cient of index
(i, i ) where the value �

�
is put. One gets

[M(�)]"[M(�)]#R
�
. (84)
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This can be written explicitly as

[M(�)]"

M
��
(�) M

��
(�)

� �

M
��
(�) 2 M

��
(�) 2 M

��
(�)

� �

M
��
(�) M

��
(�)

,

[M(�)]"

M
��
(�) 0

� �

0 2 �
�

2 0

� �

0 M
��
(�)

. (85)

Hence, the sought solution �u� is the one of
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5.3. MODAL REDUCTION

As underlined previously, the reduction property is the only one that can be used and
a truncation procedure of a modal family must be elaborated now. The method proposed
here is based on the analysis of the nd eigenvalues of equation (30).
First of all, modes corresponding to s

�
"!


�
#j�

�
with 


�
(0 need to be discarded for

the physical reason that they do not correspond to damped materials.
Then, by looking at equation (73) it can be noticed that at pulsation �, the norm of the

contribution of mode r is given by
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Regarding modes with �
�
O0, one can de"ne �
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and equation (87) becomes
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The principle of the criterion is, over a given spectrum, to give two values �
�
and �

�
which

delimit the set of the selected eigenvalues.Modes with�
�
'�

�
or modes with �

�
'�

�
are not

kept in the expansions.
Regarding the real modes (i.e., with �

�
"0), it can be suggested to drop modes that satisfy
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.



Figure 3. Admissible values of s
�
"!


�
#j�

�
; the hachured set corresponds to the complex admissible values

and the thick line on the abscissa-axis corresponds to the admissible real modes.

TABLE 1

Samples characteristics

Sample Material A Material B Material C

Flow resistivity, � (kN/m� s) 87 40 25
Porosity, h 0)97 0)94 0)95
Tortuosity, 


�
2)52 1)06 1)4

Viscous characteristic length, � (m) 37�10�� 56�10�� 93)2�10��
Thermal characteristic length, � (m) 119�10�� 110�10�� 93.2�10��
The Poisson's coe$cient, � 0)3 0 0
In vacuo shear's modulus, N (kPa) 55 2200 21
Structural damping coe$cient, �

�
0)055 0)1 0)05

Solid density, �
�
(kg/m�) 31 130 30
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These considerations lead one to discard all modes whose eigenvalue does not pertain to
the set X of �, depicted in Figure 3.
The theoretical construction of this set is not so simple to determine in the case of porous

materials due to the dependence of the variables of the model on many physical parameters;
nevertheless, the following section shows preliminary results regarding the establishment of
such limits.

6. NUMERICAL EXAMPLES

6.1. STUDIED CASES

The method presented is tested and compared to the direct solution of the system. Linear
shape functions [N�] and [N�] were used in the "nite-element implementation. Three
porous material (A, B, C) are considered whose characteristics are given in Table 1. The
characteristics of these materials are di!erent enough to show the convergence of the
method in very distinct cases.
To test the approach, a mono-dimensional "nite-element model has been developed. The

thickness of the sample is 0)12 m. The mesh consists of 25 nodes along the thickness which
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ensures the convergence of the indicators of interest. It is assumed to be bonded at one end.
This leads to a 49 d.o.f.'s problem. The sample is submitted to two di!erent kinds of
excitation in the frequency band [0; 1500 Hz]. The "rst one is called mechanical and
consists in imposing a prescribed value on the displacement of the solid-phase node at the
surface of excitation. In this case it consists of a harmonic displacement at pulsation � of
amplitude 10��m. The second one is called acoustical and consists in imposing the pressure
in the pores of the #uid phase at the surface of excitation (a harmonic variation of the
pressure of pulsation� and amplitude 1 Pa). These loads are in the domain of application of
all the physical models used in the paper.
For these con"gurations, numerical validations lies in the comparison between the

solution given by the generalized complex modes and the solution obtained in terms of
physical coordinates. The solutions are compared through two speci"c vibro-acoustics
indicators: the mean square velocity of the solid phase given by equation (89) which is
a quadratic average of the velocity in the solid phase of the porous medium and the mean
square pressure in the pores of the #uid phase given by equation (90) which is a quadratic
average of the pressure in the #uid phase pores of the sample. The expressions for the
indicators are, respectively,
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6.2. GENERALIZED COMPLEX MODES

This section is dedicated to the investigation of the calculated coupled complex modes.
This is the "rst time that poroelastic modes including viscous and thermal damping in both
phases and coupling between them have been presented. These modes are calculated
without any constraints on the face where the excitation is applied. They can then be called
free modes.

6.2.1. Modes with �
�
O0

Consider the complex modes with complex eigenvalues. Table 2 shows the di!erent
eigenfrequencies of the "ve "rst coupled complex modes of each sample. The "rst two
TABLE 2

Calculated eigenfrequencies of the coupled modes (Hz)

Mode A B C

1 291 441 57
2 513 1304 260
3 819 2166 433
4 1091 3034 604
5 1370 3589 774



Figure 4. Mode 1, solid phase: (a) mode shape, (b) mode phase.**�*, material A;*#*, material B;**£*,
material C; ****, undamped and uncoupled.

Figure 5. Mode 1, #uid phase: (a) mode shape; (b) mode phase,**�*, material A;*#*, material B; **£*,
material C; ****, undamped and uncoupled.
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modes for each sample (i.e., the modes with the lowest imaginary part) are considered.
Figures 4}7 present the norm and the phase of those modes. To have more readable
graphics, modes are shown with a maximum value of the norm equal to 1 and an initial
phase equal to 0. The modal shapes and phase for both the solid and #uid phases are shown
for the three materials. In addition, the undamped and uncoupled modes calculated by
Sgard et al. [20] are also plotted.
Figures 4 and 5 present the norm and the phase of the "rst mode. One can see in Figure 4

that the "rst modal form (norm and shape) of the solid phase is very similar for B and C and
is identical to the "rst mode calculated when neglecting coupling and damping mechanisms.
Material A exhibits notable di!erences. Regarding the #uid phase one can observe more
noticeable discrepancies, especially di!erences occur for materials B and C.
Figures 6 and 7 show the norm and the phase of the second mode. One can observe that

dissimilarities between the di!erent materials are more important compared to the "rst mode.
These results yield the following observations: the #uid phase seem more dependent on

the introduction of damping terms than the solid phase, and these di!erences have a more
noticeable in#uence on the modal phase than the modal shape. Furthermore, di!erences
increase with the order of the modes. Indeed, since the eigenfrequency increases with the



Figure 6. Mode 2, solid phase: (a) mode shape; (b) mode phase,**�*, material A;*#*, material B;**£*,
material C; ****, undamped and uncoupled.

Figure 7. Mode 2, #uid phase: (a) mode shape; (b) mode phase,**�*, material A;*#*, material B; **£*,
material C; ****, undamped and uncoupled.
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order of the modes, the dissipative e!ects are more and more important and then their
in#uence on modes are more perceptible.

6.2.2. Modes with �
�
"0

This part of the analysis is relative to the purely real modes. Contrary to materials B and
C, material A presents the particularity to have a mode with a real negative eigenvalue
whose value is of the order of one of the "rst complex modes. Numerically, it will be shown
that this mode has to be taken into account in the modal superposition. This mode is
presented in Figure 8.

6.3. MODAL SUPERPOSITION

6.3.1. Reduction

The purpose of this part is to validate the approach by showing the convergence of the
modal superposition on the [0; 1500 Hz] frequency band for both excitations de"ned



Figure 8. Material A, real mode 1. **�*, solid phase; *#*, #uid phase.

Figure 9. Material C, mechanical excitation, 250 Hz: (a) unsplit modes; (b) split modes, **�*, solid phase,
direct; *#*, solid phase, modal; **£*, #uid phase, direct; ****, #uid phase, modal.
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previously. Figures 10}15 present the comparison between the modal solution and the
reference obtained by a direct resolution of the system. These diagrams represent the
vibro-acoustic indicators de"ned previously (in dB) versus frequency.
To discard convergence problems during the projection process, the solid and #uid parts

of generalized complex mode are split. Each selected mode generates two vectors. The "rst
one contains only the solid d.o.f.'s and is completed by zeros at the location of #uid d.o.f.'s.
The second one is constructed similarly for the #uid phase. To illustrate this fact, the
comparison between the proposed approach and the direct one is tested for the solid
displacement and the #uid-phase pressure along the thickness at frequency 250 Hz. The
material investigated is C, excited by a mechanical piston motion. Figure 9 shows the
results obtained with the direct projection of modes and with the numerical splitting trick
described previously. One can observe that convergence is improved in the second case.
This choice led to a doubling of the dimension of the problem to solve (two vectors for one
mode).
The purpose is now to prove the reduction property. The following methodology is

considered: for each con"guration, several simulations are made by increasing the number



Figure 10. Material A, mechanical excitation amplitude 10��m: (a) mean square velocity (ref: 5�10��m/s); (b)
mean square pressure (ref: 2�10� Pa), **�*, direct; *#*, 1 real#2 complex modes; **£*, 1 real#4
complex modes; ****, 1 real#6 complex modes.

Figure 11. Material A, acoustical excitation amplitude 1 Pa: (a) mean square velocity (ref: 5�10��m/s); (b)
mean square pressure (ref: 2�10� Pa). **�*, direct; *#*, 2 real#2 complex modes; **£*, 2 real#4
complex modes.
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of modes considered in the modal-selected family until obtaining a perfect superposition
between the modal and the direct solution. This procedure is incremental and not based on
a physical criterion like the one de"ned in section 5.3. It can be pointed out that, in the
modal expansion, an even number of complex modes is needed. Actually, if a given mode is
accounted for, its conjugate must also be taken into account, but only one of them needs to
be calculated. In addition, with the splitting trick, this number of modes is doubled.
Figure 10 presents the convergence of the mean square velocity and the mean square

pressure versus frequency for material A under a mechanical excitation as the number of
modes increases. The superposition is made on the modal family constituted by the real
mode and the "rst complexmodes. One can see that convergence is good for both indicators
up to 1500 Hz with 1 real #6 complex modes and that 1 real #4 complex modes are
su$cient to calculate the response up to 900 Hz. Among the six complex modes needed to
achieve the convergence up to 1500 Hz, only three have been calculated and the other three
are the respective conjugates. Since there is one real and six complex modes, the number of
split modes is 2�7"14 which leads to a 14�14 system. This size is to be compared to the
otherwise 49�49 problem. Figure 11 presents the convergence of the mean square velocity



Figure 12. Material B, mechanical excitation amplitude 10��m: (a) mean square velocity (ref: 5�10��m/s); (b)
mean square pressure (ref: 2�10� Pa). **�*, direct; *#*, 2 complex modes; **£*, 4 complex modes.

Figure 13. Material B, acoustical excitation amplitude 1 Pa: (a) mean square velocity (ref: 5�10��m/s); (b)
mean square pressure (ref: 2�10� Pa). **�*, direct; *#*, 1 real#2 complex modes; **£*, 1 real#4
complex modes.

Figure 14. Material C, mechanical excitation amplitude 10��m: (a) mean square velocity (ref: 5�10��m/s); (b)
mean square pressure (ref: 2�10� Pa).**�*, direct;*#*, 6 complex modes;**£*, 8 complex modes;****,
10 complex modes.
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Figure 15. Material C, acoustical excitation amplitude 1 Pa: (a) mean square velocity (ref: 5�10��m/s); (b)
mean square pressure (ref: 2�10� Pa). **�*, direct; *#*, 1 real#2 complex modes; **£*, 1 real#4
complex modes.
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and the mean square pressure versus frequency for material A under an acoustical
excitation. For this type of excitation a rigid mode of pressure is added. This one was
skipped during the process of mode's calculation because of its null eigenvalue. It is also
a real mode so that two real modes need to be accounted for the selected modal family. One
can see that convergence is good on all the envisaged spectrum with 2 real #4 complex
modes, and the problem to be solved is of size 11�11.
Figures 12}15 present the results obtained for the other con"gurations. This yields,

respectively, to a dimension 8 and 9 problem for material B under a mechanical and
acoustical excitation. For material C the sizes are, respectively, 20 (mechanical excitation)
and 9 (acoustical excitation).

6.3.2. Criterion of selections

One can propose determination of parameters �
�
and �

�
based on the numerical

simulations made for those three materials. This criterion has no general validity and
follows from observation.
In order to illustrate the process of selection of the complex modes, consider the following

example. For material C under a mechanical excitation, convergence with 6 (resp. 8, 10)
modes is good until 700 Hz (resp. 900, 1500 Hz). This amounts to keeping modes whose
eigenfrequencies are equal to 604 Hz (resp. 774, 941 Hz). It is unnecessary to mention that if
more modes are kept, a better convergence is achieved. Hence, the idea behind the selection
process is to keep only all the modes whose imaginary part �

�
is lower than the maximum

pulsation �
��
of the spectrum so that �

�
"�

��
. This choice has been validated for the

other con"gurations. A proposed value for �
�
is 0)5. These following choices induce a limit



�
"�

��
/2 for real modes.

By looking at the eigenfrequencies and at the numerical simulation of the previous
section, this choice can appear over-sized, as shown by the numerical examples;
nevertheless, this method and these "rst investigations can help one to delimit the set
of the essential eigenvalues and then the modes to take into account in the modal
superposition.
This section was devoted to show the reduction obtained by using the generalized

complex modes. The approach has been tested and validated on three di!erent materials
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under two types of excitation. A selection procedure has been initiated by looking at the six
numerical examples.

7. CONCLUSION

This paper has presented a new modal technique based on complex modes to calculate
the vibro-acoustic response of porous materials. This method has the originality to be the
"rst study where frequency non-linearities are introduced in the calculation of poroelastic
modes. This non-linearities are induced by various e!ects in the porous medium which were
never introduced before in the calculation of modes to the authors' knowledge (viscous and
thermal e!ects, coupling between solid and #uid phases). Then, it was proved that the
calculation of the projection on the generalized complex modes does not depend on the
order of the expansions and is equivalent in terms of number of operations to the projection
of classical modes. This technique for the "rst time exhibits coupled and damped modes.
This is a preliminary step toward a physical interpretation of those media behaviors and
opens a door to a better understanding of porous materials. This is a true perspective of this
work. Finally, it was shown that using this technique leads to a reduction of the problem.
The main di$culty of this technique lies in the numerical calculation of modes because of

the ill-conditioning of matrices and could be the major di$culty in applying this method to
a three-dimensional case. The rigorous determination of a selection criterion for modes is
also a perspective of this study. Further work involves applying this approach to
three-dimensional cases.
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APPENDIX A: NOMENCLATURE

vector u
matrix [M]
square root of !1 j
degree of freedom d.o.f.
displacement of solid phase u
displacement of #uid phase ;
pressure in pores of #uid phase P
complex conjugate of x xN
transpose of matrix [A] [A]�
set of functions from � in �� F(�, ��)
set of functions from � in �� whose
dth derivative is continuous C	(�, ��)

selected set of u u
�relative di!erence �
�

nabla operator 	
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